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INTRODUCTION 

1 Statement of this work 
Our work consists in developing a new compiler from ESTEREL programs to automata. This 

compiler will make obsolete the current ESTEREL compiling modules that perform the same task but 
rely on old technology, and are not fully up-to-date with the ESTEREL semantics (they do not handle 
all cyclic ESTEREL programs). 

We have developed a new cyclic circuit analysis algorithm based on the constructive 
interpretation algorithm already used in ESTEREL v5.21. We have implemented it in a new ESTEREL 
compiler module called scoc, and we have performed various optimizations of the generated 
automata. 

Our module will be part of the next ESTEREL compiler release. 

2 ESTEREL : programs, circuits and automata 

The ESTEREL language 
ESTEREL is an imperative, synchronous, signal-oriented programming language, developed in the 

Centre de Mathématiques Appliquées of the Ecole des Mines de Paris in a team lead by Gérard 
Berry. This language is designed to program real-time systems, communication protocols, software 
or hardware controllers or man-machine interface drivers. A brief historical of ESTEREL is available 
in [1] ; ESTEREL is fully described in [2]. 

ESTEREL is currently used in industry for embedded systems (by Dassault Aviation, Motorola, 
etc.), integrated circuit design (by Cadence, Synopsys, Intel, Texas Instruments, etc.), and by 
numerous communication protocols analysts, control theoreticians, etc. 

The ESTEREL constructive semantics 
Unlike too many programming languages, ESTEREL is provided with its complete mathematical 

semantics, call the constructive semantics. The semantics is defined by a set of logical rules, 
introduced in [1] and improved in [5]. For each statement of the language, a set of rewrite rules 
defines the behavior within a specified environment. The rule are of the form : 

p
E' , k

E
p'

 
where : 

• p is the statement being rewritten into p’ (the derivative) ; which is the statement to be 
executed on next step 
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• E is the input environment (present signals) 
• E’ is the resulting environment (emitted signals) 
• k is a numerical statement completion code (0 = terminated, 1 = paused till next clock tick, 

k+2 = trap exit at level k) 
The circuit semantics translates ESTEREL programs into Boolean circuits : 

• E becomes a set of wires carrying present statuses 
• E’ is a set of wires encoding emitted signals 
• k is a set of wires encoding completion codes ; these wires activate others parts of the 

circuit 

3 Boolean circuits 
Boolean circuits are directed graphs in which nodes are Boolean gates or registers, and edges are 

wires, or nets in electronics terminology. Boolean gates perform logic operations like or-ing or 
and-ing while registers delay values for one instant (clock cycle). Instants are defined by the pulses 
of a clock. Circuits are cyclic if their graph holds at least one cycle not located on a register. 

Boolean gates are usually drawn using this convention : 

AND net OR net NOT net register net
 

Figure 1 – Boolean gates drawing convention 

Electric current flows from left to right, the initial value of the register is written under the 
register. Small circles on the inputs or outputs of gates indicate negation. 

The following ESTEREL example emits continuously the O signal until I is present. It is translated 
into the circuit of Figure 2 : 

Example Code 1 – aborted sustain 

abort 
  sustain O 
when I 
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I
!O

K1

K0

0

1

0

 
Figure 2 – Example Code 1 corresponding circuit 

The register at the bottom of the circuit is called the boot register. It outputs 1 at the first instant, 
and 0 from then on. The circuit has only one input I, one output O, and the two completion code 
wires K0 (terminated) and K1 (paused), mutually exclusive. The top-left register stores whether the 
circuit did not terminate at previous instant. 

4 Automata 
Automata or Finite State Machines (FSM) are transition machines which can only be in a finite 

number of states. In this paper, we actually consider Mealy Machines where transitions read and 
emit external signals. 

Returning to Example Code 1, we can draw its corresponding finite state machine : 

1

3

2

!O

?I

#I.!O

 
Figure 3 – Example Code 1 corresponding automaton 

The automaton starts in initial state 1, drawn as a black circle. The O signal is emitted 
independently of the presence of I (the abort statement being not immediate), and the automaton 
transitions to state 2. From state 2, if I is absent (#I), we emit O (!O) and stay in state 2 ; otherwise, 
if I is present (?I), O is not emitted and the automaton falls in final state 3, drawn as a filled circle 
inside an empty one. State 3 is called sink state, because no transition gets out of it. 
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Comparing circuits and automata 
Unlike circuits, automata are apparently very readable. This is particularly true if there is not 

much parallelism in the circuit. Otherwise, parallel statements create duplication of subautomata 
leading to size explosion. In the worst case, the automaton for a circuit can be exponentially bigger 
than the circuit. 

As far as software implementation is concerned, the comparison between circuits and automata 
can be stated as follows : 

• One can generate linear-size C code from the circuit, but all the gates have to be computed 
at each cycle. 

• One can generate linear-size C code from the automaton, with no runtime overhead. A 
transition acts by testing inputs signals and generating outputs, without intermediate 
computations. 

• However, the code size for the automaton can be exponentially bigger than the code size 
for the circuit. 

In practice, automata are excellent until they get too big. Applications such as protocols or 
simple device control lead to very efficient automata that remain reasonable in size. This is why 
automata are still used by ESTEREL users. Large applications cannot be implemented by automata, 
and will not be handled here. 

To be more precise, we can notice that to each statement of the language correspond a piece of 
circuit of almost fixed-size, while, for a circuit with m registers and n inputs/tests, we can expect a 
2m states automaton, each transitions being a tree having 2n forking nodes ; in fact, not all states are 
reachable from initial one, and, parts of circuit being disconnected according to current state, not all 
inputs/tests are tested, leading to more simple automata. 

5 The ESTEREL compilation chain 
The ESTEREL compiler is C composed of several independent compiling modules, each 

performing compilation step. ESTEREL compiler usage is described in [3]. 
The compilation flow is detailed in Figure 4 : 
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Figure 4 – ESTEREL v5.21 compilation flow 

From ESTEREL source files, three steps are required to obtain circuits : 
1) Compiling separately source files into intermediate code, with strlic ; 
2) Linking intermediate code files, with iclc ; 
3) Compiling linked files to circuits, with lcsc. 

Then, as discussed later, two steps are currently required to compile circuits into automata : 
4) Topologically sorting circuit equations, either : 

• directly with scssc for acyclic circuits 

• or with sccausal that checks constructiveness of cyclic circuits, and remove 
cycles. 

5) Building the automaton, with sscoc. 
The main goal of the present work is to suppress these two steps, particularly the sccausal 

pass, which can be very time consuming. We shall use a new direct algorithm, that will work 
indifferently with cyclic or acyclic circuits. 

Another reason for discarding the former sscoc compiler module is that it is poorly 
documented and did not follow the evolution of the rest of the compiler. 
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FORMER AUTOMATON GENERATION 

1 Brief historical review 
The ESTEREL compiler has passed through five major steps, each one starting a new major 

version number : 
• Till version 3, the output code was finite-state machines based. Approximate algorithms 

were able to compile a class of cyclic programs (see [4]). 
• Industrial ESTEREL users started developing programs so big that automata kept exploding. 

A new technology ESTEREL v4 was developed to translate ESTEREL programs into circuits 
in a roughly linear way. Automata were still useful, and Frédéric Mignard developed a 
sscoc module to translate circuits into automata. Version 4 worked only with acyclic 
circuits. 

• Current version 5 is based on the constructive semantics, which can handles cycles in a 
very neat way. A module called sccausal analyses cycles and returns an acyclic 
equivalent version of a constructive cyclic program, which makes it possible to use sscoc 
to build automata. 

2 sscoc 
The sscoc compiler was written by Frédéric Mignard during the second half-year of his 

Computer Science PhD, concurrently with an automata optimizer, embeded within sscoc. 
sccoc takes circuits in ssc5 format ([6]) as input, and output finite state machines in oc5 

format ([10]). The structure of the compiler is described in [8] ; underlaying research topics are 
stated in [9]. 

The sscoc former automata compiler viewed acyclic circuits as sorted Boolean equations and 
used a single-pass algorithm, to solve these equations in linear time. The algorithm works by 
elimination, substituting variables by results of previously solved equations. 

By nature, this algorithm cannot work with cyclic circuits. Cycles have to be removed 
beforehand by the Binary Decision Diagrams (BDD) based sccausal module. However, 
sccausal is expensive in time and memory, and this path is impractical. 
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NEW AUTOMATON GENERATION 

1 A different view of circuits 
The new compiler views circuits as arbitrary graphs of Boolean gates, or netlists, possibly cyclic. 

The basic evaluation algorithm mimics electric current propagation in wires (nets) and gates. 
Technically speaking, nets are implemented as objects that are waiting for messages from their 

predecessors, compute their value from those messages, and acquaint their successors with this 
value. Given an input vector to the circuit, elementary propagation steps are iterated until all nets 
have been evaluated : 

• an OR gate can be set to 1 if any of its predecessors has been set to 1, or to 0 when all of its 
predecessors have been set to 0 ; 

• dually, an AND gate can be set to 0 if any of its predecessors has been set to 0, or to 1 
when all of its predecessors have been set to 1 ; 

• a negation negates its input value whenever it is available. 
Then, the automaton transitions can be built. If some nets remain unevaluated, the program is not 

constructive and it is rejected. 
A directed graph of nets is built at parse time. The algorithm works on this graph without sorting 

it. 
The algorithm converges in linear time with respect to the size of the graph : it cannot loop 

endlessly. 
This new compiler, called scoc, takes circuits in sc7 format ([7]) as input, and output finite 

state machines in oc5 format ([10]). 

2 Basic algorithm 
The basic algorithm to compile circuits into finite states machine, which is explained in the 

Figure 5 flowchart, consists of two nested loops : the first one builds states, starting from initial 
state, until all discovered states have been analyzed ; the second one analyses an individual state 
and build transitions, by computing nets values as above for all possible input vectors. 

For each state, input decisions build a tree that encodes the Mealy transitions set in an efficient 
way. 
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Figure 5 – Basic algorithm diagram 

Nets can be of different types, therefore having different behaviors, for instance : 
• Registers propagate their current value, which comes from the previous instant ; their 

computed value in the current instant will replace it for the next instant. 
• Nets driving data actions, when evaluated to 1, store their action index in the current 

transition thread, then propagate their value ; 
• … 

These behavioral differences are handled through class specialization. 
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3 Algorithm refinements 
The basic algorithm can be refined in many ways, either to improve compilation speed, or 

quality of generated automata. 

Test delaying 
When a test net is set to 1, forking does not occur immediately ; instead, the net is just appended 

to a list of pending test nets. When propagation cannot proceed, pending nets are extracted form the 
list, and fork occurs. This technique reduces redundancy between branches. 

Save–and–restore optimization 
Once a branch of the transition tree has been built, when backtracking to handle another inputs, 

the previous context must be restored. 
We could save nets states in a big table, to make restoration easy. But, most of the times, 

transitions branches are short, forking points are very close to each other, and only a subset of nets 
are altered between two successive backtracking points. Storing in a table would be inefficient. 
Instead, we chose to store undo data blocks into undo block stacks, being themselves stored in a 
backtracking stack : 

• Each time a branch is started, a new undo block stack is created and pushed on top of the 
backtracking stack. 

• Each time a net (or some other data having to be saved and restored) is to be altered, it is 
pushed on top of the current undo block stack. 

• Each time a branch building is over, the current undo block stack is flushed, saved data 
being restored, then the stack is popped. 

This technique ensures minimal data transfers, unaltered nets being not unpatched by the 
saving/restoring process. 

As this technique was implemented since first version, we can’t estimate its impact on 
compilation speed, but it is undoubtedly worth it. 

Undo block stacks allocation optimization 
Default heap allocation is known as a very inefficient process when subsets of allocated and 

freed memory blocks interleaves in special ways, which currently occurs with our stacks. 
As stacks of stacks can also be seen as a single stack. Instead of allocating undo blocks one at a 

time and linking them with pointers, we allocate them by chunks of hundred kilo-octets, linked to 
each other. “stacks” boundaries are (roughly) stored as a reference to a block and an index in the 
block where the stacks starts. 

This modification also requires to turn all undo blocks from polymorphic objects to constant-size 
unions with a type tag. It yielded an average 200% compilation speed improvement. 

Using signal relations 
Input signal tests are the main cause of transition size explosion. Reducing the number of 

required input tests can dramatically impact compilation speed and automaton size. 
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To achieve this reduction, ESTEREL programmers can specify relations between input signals, 
which are of two kinds : 

• Signal implications (⇒), where the presence of a master signal implies the presence of a 
slave one ; 

• Signal exclusions (#), where the presence of a signal implies the absence of other ones. 
Given the following example, the relations are stored in a directed graph, as seen in Figure 7: 

Figure 6 – Signal relations example 

3

21

4 5

: present ⇒ present

: absent ⇒ absent

: present ⇒ absent
: absent  ⇒ present

 
Figure 7 – Signal relation example graph 

Storing the relations in a graph allows us to process them in linear time and in any order, which 
is required for forthcoming optimizations. 

Smart circuit evaluation 
Concerning resulting finite states machine, the only nets that are really important are registers 

(which determine next state), K0/K1 (which determine whether the automaton falls into sink state 
or just goes on), output signals (being emitted or not) and action nets (which are, among other uses, 
side-effects operating on values) ; all other nets are there only to compute the aforementioned ones. 

Hence, we can stop circuit evaluation as soon as all the required nets are stabilized. As this 
would lead to acceptance of circuits that are non-constructive (where some nets can never be 
valued), this optimization remains optional. 

Signal partitioning 
An ESTEREL program often contains sequential code that lingers over several instants : the 

different parts of those sequences are therefore not activated at the same time (in mutual exclusion). 
Exhibiting the inputs/tests which are only used by those inactivated parts would lead to avoidable 
branching. 

Determining the partition between inputs/tests that can impact on circuits and those which can’t 
is achieved by selecting which input/test nets are reachable from required ones (registers, K0/K1, 
outputs, actions nets), using a depth-first walk in the circuit graph, which is linear in time. 

Combined to smart evaluation, this optimization lead to great compilation speed improvement on 
several circuits (for instance, on TCINT example, compilation time felt from more than 3 hours to 3 
or 4 seconds). 

3 ⇒ 2 
2 ⇒ 1 
1 # 4 # 5 
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Signal sorting 
We can even go further, and sort inputs upon the number of registers that are likely to be set. 

This appeared to be very effective on circuits where parts form a hierarchical system. 
The bus arbiter, a token-ring based protocol, which was originally treated in Mc Millan’s thesis 

[11] and adapted in ESTEREL in [12], is a very good example for this optimization (see Figure 8) : it 
consists of a set of cells requesting access to a data bus ; only one cell can access the bus at a time. 
To prevent from starvation and ensure fairness, cells are assigned a priority order which rotates 
through time : at first instant, the first cell would get the access before all other (if it was claiming 
it), the second one would get it –in the instant– if the first one didn’t claim it, and the last one would 
only get the access –still in the instant– whether no other cells claimed it ; at second instant, the 
second cell would have the highest priority, and the first one the lowest, and so on… 

bus

Cell #1

Cell #2

Cell #3

Cell #4

Cell #5

 
Figure 8 – Cells requesting access to a bus 

In ESTEREL, cell i requesting an access emits a REQi signal, and the cell being granted access 
receives an ACKi signal. The resulting automaton has as many states as there are cells, each states 
indicating which cell has the current highest priority. Since each request signal can be present or not 
independently, we can expect each transitions to be 2n sized (n being the number of cells). However, 
as soon as a high priority cell emits a request, all other cells of lower priority cannot get access to 
the bus, so that it is unnecessary to test their request signal ; furthermore, requests from high 
priority cells should be tested first, since their presence lead immediately to a new state. The 
corresponding circuit behavior of this property is that, depending on current state, the request signal 
coming from the cell of highest priority will set all the registers (indicating the next state), and so on 
for the next signals… 

Applying this input sorting algorithm arranges the transition trees to reduced ones, comb-shaped, 
therefore linear (see Figure 9) : 
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2

?Req1
!Ack1

#Req1

?Req2
!Ack2

?Req3
!Ack3 #Req3

1

#Req2

3

?Req2
!Ack2

#Req2

?Req3
!Ack3

?Req1
!Ack1 #Req1

#Req3

?Req3
!Ack3

#Req3

?Req1
!Ack1

?Req2
!Ack2 #Req2

#Req1

 
Figure 9  – Arbiter bus automaton (3 cells) 

This algorithm is implemented as linear in time depth-first walks within the graph from registers. 

DAG sharing through hash-cache 
One of the drawbacks of finite states machines is that unrelated blocks are merged, or at least do 

not obviously appear. Also, some transition parts get duplicated in different places among automata, 
while they could be shared to save memory or at least to reduce output size. 

These two goals, making unrelated blocks reappear in some ways and having output size 
reduced, are achieved by manipulating transitions no more as trees but as directed acyclic graphs 
(DAGs), all those dags being accessible through a hashtable : once a transition node is built, it is 
looked for a previously built twin (identical node with identical heirs), then destroyed –on 
successful search– to be replaced by this pre-existent node, or stored in the hashtable –otherwise. 
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By the way, this also allows to compare test branches in constant time (by pointer comparison), 
which may conduct to remove –a posteriori– tests which were avoidable. 

Given the following example, a set of two unrelated blocks which are run concurrently, we can 
see on the standard automaton (Figure 10), that these unrelated blocks are not apparent, the second 
one being duplicated. On the opposite, we can see on the automaton with shared DAGs (Figure 11), 
that these unrelated blocks are still visible. Of course, this would have resulted in greater 
improvements with a higher number of unrelated blocks. 

Example Code 2 – unrelated parallel blocks 

?A . !A' #A

?B . !B'

#B ?B . !B'

#B

 
Figure 10 – Example Code 2 corresponding automaton 

?A . !A' #A

?B . !B' #B

 
Figure 11 – Example Code 2 corresponding automaton, with shared DAGs 

  present A 
    emit A' 
  end present 
|| 
  present B 
    emit B' 
  end present 
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4 Performances 
scoc has been tested and timed on the following circuits : 

• Arbiter12, the bus arbiter mentionned about signal sorting refinement, with 12 cells ; 
• ATDS-100-C2, an interface protocol between a VME bus and an ATDS bus ; 
• Control, the Renault 5 dashboard ; 
• TCINT, a Turbo Channel device interface ; 
• Wristwatch, Gérard Berry’s ESTEREL implementation of a wristwatch. 

Table 1 summarizes the different metrics we can notice about these examples. 

 nets registers inputs 

Arbiter12 507 25 12 
ATDS-100-C2 796 54 8 
Control 1 383 66 15 
TCINT 1 051 90 19 
Wristwatch 830 35 6 

Table 1 – Example circuits metrics 

Keep in mind that : 
• the number of registers exponentially drives the number of potential states ; 
• the number of inputs (with the number of test nets, not stated) drives exponentially drives 

the size of transitions ; 
• the number of nets drives the time taken for propagation algorithm. 

Table 2 states the number of processor cycles taken for each example by scssc and sscoc, 
then the new scoc, with several options. As Arbiter12 is a cyclical circuit, sccausal was 
required instead of scssc ; sccausal being very time expensive, it would not have been fair to 
consider it. 

This measures were done on an Intel Pentium II processor : with such a processor, running at 
250MHz (which was even not the Intel bottom-of-the-range, at the time this paper was written), 
250 000 000 cycles would only take 1 second. 

SCSSC 12 655 140 16 914 682 16 914 682 15 528 094

SSCOC 3 548 953 106 21 085 486 303 894 941 2 415 424 115 24 947 579

SCSSC + SSCOC 3 548 953 106 100.00% 33 740 626 100.00% 320 809 623 100.00% 2 432 338 797 100.00% 40 475 673 100.00%

SCOC -simul -nocache 539 765 735 15.21% 192 575 710 570.75% 288 204 933 89.84% 30 572 158 75.53%

SCOC -simul 443 666 466 12.50% 123 921 908 367.28% 298 244 182 92.97% 31 095 716 76.83%

SCOC -simul -smarteval 296 605 212 8.36% 26 987 096 79.98% 292 358 295 91.13% 724 519 316 29.79% 30 789 945 76.07%

SCOC -simul -smarteval -sortinputs 13 877 086 0.39% 29 045 996 86.09% 294 008 621 91.65% 230 017 026 9.46% 30 828 684 76.17%

SCOC -simul -smarteval -sortinputs -dags 13 820 412 0.39% 28 994 608 85.93% 595 940 993 185.76% 235 028 491 9.66% 31 615 023 78.11%

SCOC -simul -sortinputs 219 868 773 6.20% 128 319 646 380.31% 298 911 819 93.17% 31 112 758 76.87%

SCOC -simul -sortinputs -dags 220 401 545 6.21% 128 274 224 380.18% 600 886 155 187.30% 31 875 884 78.75%

WristwatchArbiter12 ATDS-100-C2 Control TCINT

 
Table 2 – Performance measures (processor cycles) 

From this table, we could compare scoc versus scssc+sscoc, and draw the Figure 12 
graph : 
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Arbiter12 ATDS-100-C2 Control TCINT Wristwatch
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SCOC -simul -smarteval -sortinputs -dags SCOC -simul -sortinputs SCOC -simul -sortinputs -dags SCSSC + SSCOC  
Figure 12 – Performance comparisons 

From these comparisons, we can state miscellaneous observations (neither ordered nor 
exhaustive) : 

• scoc can always be faster than scssc+sscoc, and sometimes more than 10 times, with 
appropriate options. 

• Not all options but smart evaluation are always more efficient ; with full evaluation, 
compiling TCINT would take about 3 hours, and 3 seconds with. 

• Altough transition nodes caching increase treatments, it is most of the time worth it, for it 
speeds memory allocation up. 

Output quality was not considered, altough it could be interesting. Anyway, we can notice that 
sorting inputs (which dramatically increases compilation speed in the best case, and only causes a 
slight overhead in other cases) is supposed to have a good impact on transitions size. 
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CONCLUSION 

In order to conclude, we could state that scoc is a rather efficient compiler, able to process 
cyclical circuits, and up-to-date with the ESTEREL language. 

Our future researches will probably focus on looking for ways to turn scoc able to compile 
unlinked circuits separately, then link the resulting sub-automata together. 
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RESUME 

Ce document présente les travaux effectués dans le cadre de mon stage de DEA d’Informatique, 
concernant la compilation de circuits booléens en automates. 

Nous commencerons par introduire le cadre des langages temps réels, notamment ESTEREL, puis 
nous présenterons les circuits logiques et les automates d’états finis. Nous discuterons brièvement 
de l’ancienne technique de compilation des circuits en automates, basée sur des systèmes 
d’équations triées (donc non cycliques), puis nous expliciterons la nouvelle, ne nécessitant pas de tri 
et indifférente aux éventuels cycles. Nous terminerons par une évaluation comparative des 
performances du nouveau compilateur sur quelques exemples. 

ABSTRACT 

This document presents the work done during the second half-year of my Computer Science 
PhD, dealing with Boolean circuits compilation into finite states machines. 

We will start by introducing the framework of real time languages, focusing on ESTEREL, then 
we will present Boolean circuits and finite states machines (FSM). We will briefly discuss of former 
circuits to FSM compilation technique, based upon sorted equation systems (therefore non cyclical), 
then we will explicit the new one, which does not require any more sorting and is unaffected by 
potential cycles. We will end by a comparative performance evaluation on several examples. 


