
State Abstraction Techniques
for the Verification of Reactive Circuits

Yannis Bres1, Gérard Berry2, Amar Bouali2, and Ellen M. Sentovich3

1 CMA-EMP/INRIA (Yannis.Bres@cma.inria.fr)
2 Esterel Technologies ([Gerard.Berry,Amar.Bouali]@esterel-technologies.com)

3 Cadence Berkeley Labs (EllenS@cadence.com)

Abstract. Several techniques for formal verification of synchronous cir-
cuits depend on the computation of the reachable state space (RSS) of
the circuit. Computing the exact RSS may be prohibitively expensive.
In order to simplify the computation, the exact RSS can be replaced by
an over-approximation of it, called the ORSS. The resulting verification
computation will be conservative, and the larger the ORSS, the more
conservative the approximation. A common technique for computing the
ORSS is to replace some of its state variables by inputs. In this paper,
we present a new approach based on variable abstraction using a three-
valued logic. We also present a way to reduce the over-approximation by
using structural information given by compilers of high-level languages
like Esterel, ECL or SyncCharts. A real example of an avionic system is
used to show the improvements that variable abstraction can bring.

1 Introduction

This paper deals with formal verification of synchronous designs derived from
programs written either in Esterel [4, 5], ECL [15] or SyncCharts [1] languages.
These languages are well suited for control-dominated programs, both for hard-
ware and software targets. ECL and SyncCharts programs can be translated
into Esterel. The Esterel compiler translates such programs into the pair of a
sequential circuit and a data path.

Formal verification is currently performed on the control part of the program,
by XEVE [2], a BDD-based verifier publicly available, or the verifier built-in the
Esterel Studio tool [14]. The properties are expressed by synchronous bug ob-
servers [20], i.e. auxiliary signals that are emitted by the circuit in case of a
safety property violation. Verification amounts to checking that observer sig-
nals can never be emitted. To check observers, XEVE uses a forward reachabil-
ity technique well-adapted to Esterel control-dominated programs: it iteratively
computes the reachable state space of the circuit, or RSS, checking at each step
that observers cannot be emitted for any reachable state and any legal input.
Although this approach has proved successful in handling quite large designs,
it is limited by the potential explosion of BDDs during the computation of the
RSS.

This paper is devoted to improvements of the verification algorithm based on
variable abstraction. The global idea is to use over-approximations (ORSS) of the
exact RSS, which is usually an overkill to prove safety properties. Verification
using the ORSS is conservative: if a property is true for an ORSS, it is true
for the original circuit, but a given ORSS may not prove the desired property.
An ORSS can be obtained directly from the structure of the source program, as
explained in [25], but its impact on verification performance is relatively limited.
A better approach to simplify verification is to reduce the number of variables and
functions occuring during the BDD computations. We study two techniques for
this purpose: register inputization, in which a state variable is simply made free in
the RSS, and register abstraction, in which we use a three-valued logic. Register
inputization views some registers as free combinational variables, losing their
state-holding contents. Register abstraction uses a three-valued logic and makes
some register variables completely disappear from the BDD, which is attractive
to improve computation times, but is a stronger abstraction. Both techniques
can be combined with the aforementioned structural ORSS ones. We show the
efficiency of our method on a real avionics system, the fuel management of a twin-
engine jet aircraft from Dassault Aviation, and present two other experiments.

Section 2 presents the algorithms for RSS computation. Section 3 presents
the ORSS abstraction techniques. Section 4 presents the application example,
and section 5 concludes.

1.1 Related Work

One of the most studied approach to ORSS computation is based on FSM decom-
position: in [11], Cho et al. proposed approximate RSS computation algorithms
that decompose the set of state variables into disjoint subsets. Each subset is
used to compute a portion of the RSS, and the cross-product is taken afterwards
for an ORSS. Extension to non-disjoint subsets was described by Govindaraju
et al. in [16], and refined in [17] through addition of auxiliary state variables
that increase correlation between subsets. Such techniques perform a posteri-
ori quantification, as state variables from other subsets are replaced by inputs,
which can turns out to be very expensive.

Three-valued logic are often used in model checking partial or approximated
systems. For instance, [6] (refined in [7]) used three-valued logic in order to
interprete modal logic formulas on partial Kripke structures. However, this work
and its refinement ([19], [18], ...) operates on labeled transition systems which are
explicitly explored, while our analysis are performed on systems represented as
Boolean circuits, symbolically explored using BDD-based techniques. Although
applications to symbolic techniques were considered, this has not yet been done
to the best of our knowledge.

2 Background

2.1 Finite State Machines

Let B = {0, 1} be the Boolean set. The FSMs we consider are completely spec-
ified Mealy machines, defined as tuples (m,n, p, δ, ω, I,J), where:

– m is the number of inputs.
– n is the number of state variables (registers).
– p is the number of outputs.
– δ : Bm ×Bn → Bn is the vector of elementary register transition functions.
– ω : Bm ×Bn → Bp is the vector of elementary output functions.
– I : Bn → B is the characteristic function of the set of initial states.
– J : Bm → B is the characteristic function of the valid input space. For

instance, if some inputs are implied by others, or if some pairs of inputs are
mutually exclusive, the whole input space would not be valid.

We use the same notation for a set or its characteristic function. Thus,
J (x) = 1 means x ∈ J . Also, for the sake of clarity, we omit the arrow on
top of vectorial functions or variables. Negated expressions are either prefixed
by ¬ or overlined.

2.2 Standard RSS Computation

The usual way to compute the RSS of a FSM symbolically [9, 12], is to find the
limit of the converging sequence of finite sets defined by the following equations:

RSS0 = I
RSSk+1 = RSSk ∪ δ(J , RSSk) (1)

where we use the standard extension of function to sets:

δ(X, Y) = {δ(x, y) | x ∈ X, y ∈ Y }

Using BDDs for characteristic functions, (1) becomes:

RSSk+1 = RSSk ∪ { r′ ∈ Bn | ∃r ∈ RSSk , ∃i ∈ Bm .J (i) ∧ r′=δ(i, r) } (2)

In [12], Coudert and Madre introduced the image operator Img(f, χ), which
computes the image of the vectorial function f on the state set of characteristic
function χ1:

Img(f, χ) = λr′.

(
∃r,i . χ(r) ∧ J (i) ∧

(
n∧

k=1

r′k = fk(i, r)

))
(3)

1 λr′.E is the standard λ-calculus notation for the unnamed function of body E, with
argument r′.

Algorithm 1 presents an outline of the computation of RSS for a given FSM.
The main iteration that computes successive RSSk sets is from line 4 to 17. Line
5 builds the domain for each iteration, based on most recently reached states and
the set of valid inputs J . Lines 8 to 10 contain the loop that builds the transition
function for the current iteration domain. Line 9 builds the function associated
with a single register, restricted for the current domain. Line 10 associates this
function with its register variable for the next state and combines it with the final
transition function. Line 12 applies the transition function to the last reachable
state set. Line 13 performs existential quantifications over the set of old register
variables and inputs. Line 14 substitutes the new register variables by the old
ones, in order to obtain a function over the set of old register variables for the
next iteration. Finally, line 15 computes the sets of new states and line 16 adds
this set to the final reachable state set. Iteration stops when the set of new states
is empty.

Note that this is only a crude implementation. In the next version, currently
under development, the complete transition function is actually never built as
we do in lines 8 to 10, which may cause the computation to blow-up quickly.
The image is computed over partitions of the transition function and existential
quantifications are performed on-the-fly rather than in a simple pass, as we
mention in line 13. However, it is beyond the scope of this article to discuss such
improvements.

1 function RSS(FSM)
2 Result ← I
3 NewStates ← I
4 repeat
5 Domain ← J ∧ NewStates
7 δ ← 1
8 for i ∈ [1..n]
9 δi ← BuildRestrictedRegisterFunction(i, Domain)
10 δ ← δ ∧ (NewRegVariable(i) = δi)
11 end for
12 Image ← δ ∧ NewStates
13 Image ← Quantify(Image, OldRegVariables+InputVariables)
14 Image ← Substitute(Image, NewRegVariables, OldRegVariables)
15 NewStates ← Image ∧ ¬Result
16 Result ← Result ∨ Image
17 until NewStates = 0

Algorithm 1: RSS fixed-point computation

Example Using Algorithm 1, we can enumerate the reachable states of the
circuit of Figure 1. The initial state (1, 0, 0, 0) of the circuit is indicated by
the values at the bottom of the registers. The first iteration reveals the new

state (0, 1, 0, 0); the second iteration reveals the new state (0, 0, 1, 0); the third
iteration reaches the fixpoint: the three registers r1, r2 and r3 are exclusive and
r4 is always 0.

r1

r2

r3

r4

1

0

0

0

Figure 1: A sequential circuit

RSS Computation Complexity Analysis In this section, the complexity is
expressed with respect to the BDD size and in the worst case.

The cost of ¬ is constant and the cost of ∨, ∧ is polynomial [9, 12]. Unfor-
tunately, the cost of the Img operator, used in line 13 in the Algorithm 1, is
exponential with respect to the number of variables, notably because of nested
existential quantifications. Informally, while ∃x . f(x) amounts to computing
f(0)+f(1), ∃x,y . f(x, y) amounts to computing f(0, 0)+f(0, 1)+f(1, 0)+f(1, 1),
and so on.

In the sequel, we will study techniques to improve the RSS computation by
reducing the number of variables to apply a posteriori quantification to, in some
case at the expense of over-approximation.

3 ORSS Computation

3.1 Replacing State Variables by Inputs

Replacing state variables by inputs can improve the RSS computation: there
are fewer register functions to build, combine and manipulate during the image
computation, and fewer register variables to substitute. Replacing state variables
by inputs weakens the constraints between these variables, leading to an over-
approximated result.

Note that the number of a posteriori existential quantifications to perform
remains the same.

When a state variable is replaced by an input, the correlation between mul-
tiple occurrences of this variable in an expression is maintained. This is the case
in reconvergent fanout in a circuit. For instance, in Figure 2, there is a circuit
fragment generated from a statement like present I then . . . else The go wire,
which determines whether a statement is active, is combined with the input I
presence wire. Even if the state variable driving this go wire is replaced by an
input, we are still able to determine that then and else branches are exclusive.

then

else

go

I

Figure 2: Generated nets for a present I then . . . else . . . statement

Example With the example circuit of Figure 1, suppose we want to check that
r1 ∧ r2 = 0. We can replace r4 with an input and apply the standard RSS
computation algorithm: from the initial state (1, 0, 0), the first iteration reveals
the new state (0, 1, 0), the second iteration reveals the new state (0, 0, 1) and the
third iteration reaches the fixpoint. We can still prove that r1 ∧ r2 = 0, but the
computation required fewer register functions.

Conversely, if we choose to replace r3 with an input, starting from the initial
state (r1, r2, r4) = (1, 0, 0), the first iteration reveals the new states (0, 1, 0) and
(1, 1, 0), the second iteration reveals the new state (0, 0, 0) and the third iteration
reaches the fixpoint. We cannot prove that r1 ∧ r2 = 0.

3.2 Variable Abstraction using Ternary-Valued Logic

Three-Valued Logic As a refinement of Malik’s work [23], Shiple, Berry and
Touati [24] used Scott’s three-valued logic to analyse cyclic circuits. Scott’s three-
valued logic is built upon the usual two-valued Boolean logic by adding a third
value, noted ⊥, which means that a variable is undefined, and by extending usual
Boolean operators.

Similarly, we propose to introduce a third value meaning that a variable is
defined, i.e. either true or false, noted d. Indeed, the laws for d are exactly those
of ⊥, and we are simply using standard Scott Logic. However, we prefer to use
the d symbol since the intuition is different.

The 3 logic values {0, 1, d} are respectively encoded by the pairs of Boolean
values {1, 0}, {0, 1} and {0, 0}. In expressions, we encode variables we want to
keep by a pair (x, x), and variables we want to abstract by the constant pair
d = (0, 0). Three-valued functions (TVFs) are encoded using a pair of Boolean

functions
(
f0, f1

)
, such that f0 (resp. f1) is the characteristic function of the

set for which f evaluates to 0 (resp. 1). The set fd of valuations for which f
is defined is fd = f0+f1 and, by construction, f0 ·f1 is always false. Hence, f
does not characterize a partition of two sets (f,¬f) as in Boolean logic, but a
partition of three sets

(
f0, f1, fd

)
, as seen on Figure 3.

0f

1fdf

Figure 3: f0, f1 and fd onsets

Standard operators over Boolean functions are extended to TVFs with re-
spect to the following formulas:

¬ (
f0, f1

)
=

(
f1, f0

)
(
f0, f1

)
+

(
g0, g1

)
=

(
f0 ·g0, f1+g1

)
(
f0, f1

) · (g0, g1
)

=
(
f0+g0, f1 ·g1

)

For instance, f+g is false if both f and g are false, but true as soon as either f
or g is true.

The three-valued logic functions are known to be monotonic [8] in the lattice
{d ≤ 0, d ≤ 1}.

Application to the RSS Computation By abstracting variables, we take the
previous technique a step further: while state variables replaced by inputs were
still present in intermediate computation, abstracted variable are completely
removed from the support of the BDDs.

To achieve this, we need to return to how the equality in (3) is computed.
As the equality a=b can be written as a·b + a·b, (3) is internally expanded into:

Img(f, χ) = λr′.

(
∃r,i . χ(r) ∧ J (i) ∧

(
n∧

k=1

r′k ·fk(i, r) + r′k ·fk(i, r)

))
(4)

Using three-valued logic, we cannot simply replace fk by f1
k and fk by f0

k , as
we do not have f1

k ∨ f0
k , unlike fk ∨ fk, as represented on Figure 3. Instead of

a partition f , f , we now have three sets, f0, f1, and fd = f0 + f1, the latter
being the set of arguments for which we only know that f is defined. Therefore,
we must widen the positive function f by f0, and the negative function f by f1.

We introduce the OImg operator as the widening of the standard Img operator,
defined as:

OImg(f, χ) = λr′.

(
∃r,i . χ(r) ∧ J (i) ∧

(
n∧

k=1

r′k ·f0
k (i, r) + r′k ·f1

k (i, r)

))
(5)

Informally, we have replaced the characteristic function of the set “on which
f is true” (the onset of f), by a superset “on which f is certainly not false”, and
vice versa. However, when applied to concrete variables of the form (x,¬x), the
onsets of f0 and f1 forms a partition of the domain on which f is defined, and
the result of (5) remains exact.

Since three-valued functions are monotonic, the OImg operator is also mono-
tonic in the complete lattice of sets of states. Hence the algorithm terminates
with a unique least fixpoint.

Example Returning to the example circuit of Figure 1, in order to check that
r1 ∧ r2 = 0, we can abstract r4, and apply the widened RSS computation algo-
rithm: from the initial state (r1, r2, r3) = (1, 0, 0), three iterations reveal the
states (0, 1, 0) and then (0, 0, 1). Having abstracted r4, we could prove that
r1 ∧ r2 = 0 with less functions but also with less intermediate variables.

Conversely, if we choose to abstract r3, starting from the initial state
(r1, r2, r4) = (1, 0, 0), three iterations reveal the states (0, 1, 0) and (1, 1, 0) and
then (0, 0, 0). We cannot prove that r1 ∧ r2 = 0.

Discussion As for the previous technique, there are fewer register functions to
combine and manipulate during the image computation, and even fewer variables
to substitute. Furthermore, the number of variables that have to be quantified a
posteriori is reduced: the former formula ∃x,y . f(x, y) becomes f(d, 0) + f(d, 1)
when x is abstracted, instead of f(0, 0) + f(0, 1) + f(1, 0) + f(1, 1). One can
argue that the number of register function to build is increased, but this step of
the RSS computation is far from being critical.

On one hand, abstraction reduces the number of BDD variables and functions
to compute, by early quantification. Of course, if the abstracted variables were
really irrelevant, they would have also disappeared from the BDDs, but during
its construction; our technique removes them before.

On the other hand, we have seen that the equality must be widened, which
leads to an over-approximated result. Furthermore, the information we loose in
the abstraction process is the correlation between positive and negative instances
of a variable. For instance, d·d is abstracted to d instead of 0. Returning to Figure
2, choosing to abstract the test variable would lead to loose the knowledge that
both true and false branches are exclusive.

So far, the selection of state variables to be abstracted still depends on proper
human designer guidance.

3.3 Refinement Using the Esterel Selection Tree

Esterel [4, 5] is a control-dominated language: the control part has a hierarchi-
cal structure, reflecting nesting of statements in the original programs, while
communication between different parts of the program is handled through in-
stantaneously propagating signals or shared variables. Roughly, every construct
in the program has an associated selection wire indicating whether this con-
struct is active or not. The value that these selection wires carry comes from
combinations of registers, i.e. the current state of the machine. Selection registers
are then combined with tests to activate other areas of the program and finally
propagated to the registers to determine the next FSM state.

As generated from high-level language, Esterel circuits feature some interest-
ing information concerning their design, notably the hierarchy of pauses, i.e. reg-
isters generated by explicit or implicit pause statements. For instance, consider
Program 1, where declarations are omitted. Square brackets group statements,
semi-colons indicate sequence, and ‖ indicates parallelism. The await instruc-
tion contains an implicit pause: once the first instant an await statement was
activated is over, the next statement is executed as soon as the awaited signal
appears. Therefore, each await statement will generate a register in the circuit.
Because await statements at lines 2 and 4 are executed in sequence, their reg-
ister are exclusive; similarly, because block 1-9 is executed in sequence with the
await statement at line 10, the register coming from line 10 is exclusive with
all registers coming from block 1-9. On the other hand, blocks 2-5 and 7-8 are
compatible, so no relation can be infered.

In Esterel circuits, such an information is stored in the Selection Tree [25],
where non-terminal nodes indicate either compatibility or exclusivity and termi-
nal nodes are registers. The Selection Tree of Program 1 is represented on the
right-hand side, where exclusive nodes are noted with sharps. From this Selection
Tree, we can build a BDD that alone gives an over-approximation of the RSS of
the circuit, for all the states it denies cannot be reached by construction. With
adequate variable ordering, the construction of such a BDD is straightforward.
In the sequel, we will see that this BDD can be used both as an upper bound
for over-approximation, and to maintain some constraints on loosen variables.

Use of the Esterel Selection Tree When replacing state variables by inputs,
the Esterel selection tree can be used in two ways.

First, we can enhance the input care set with constraints involving at least
one state variable that has been replaced by an input, as the input care set can
actually reference both inputs and combinational inputs, i.e. real state variables.

Second, we can build, from the relations involving state variables, an up-
per bound for over-approximation, or over-approximation ceiling. Erroneously
discovered states that cannot be reached by construction are removed by inter-
secting the set of new states with the over-approximation ceiling, at the end of
each step of the RSS computation process.

When abstracting variables, we cannot refine the input care set with relations
from the Esterel selection tree, as there is no variable any more. However, we

1 [
2 await I1; pause 1 - - - #
3 do something ; # - - - |
4 await I2; pause 2 - - - # |
5 do something | - - -#
6 ‖ | #
7 await I3; pause 3 - - - - - - - -| # - - - - -
8 do something #
9]; #
10 await I4; pause 4 - - - - - - - - - - - #
11 do something

Program 1: Esterel Example Program

are still able to reference the subset of state variables that are not abstracted,
and build an over-approximation ceiling BDD.

4 Experiments

We have implemented the presented technique on top of the TiGeR [13] BDD
package. Our tool was run on a 750MHz Pentium III machine with 1GB of
memory.

We present data on an industrial Esterel circuit: the fuel-management system
of a twin-engine jet aircraft from Dassault Aviation, described in [21]. This
system consists in several modules: 2 engines, 2 feeder tanks and several internal
and external tanks. The main function of this system is to ensure that engines are
properly fed, while managing component failures, fuel load balancing between
the two sides of the aircraft, in-flight refueling, etc. Most of these tasks are
handled by the two feeder tanks, and several safety properties were written for
these modules. The complete design has 9,154 nets and 509 registers. Computing
the exact RSS of the complete design is intractable on a 1GB machine. However,
when focusing on only one safety property at a time, this become largely feasible
after a simple pass of transitive network sweeping, which may remove more than
300 registers.

Tables 1 and 2 shows comparisons of the aforementioned approaches to the
RSS computation, for two properties of the design that feature regular behavior
of our tool (other properties only show behaviours similar to either one of the
featured properties). The first line shows the results for exact computation, the
second when some state variables are replaced by inputs, the third when some
state variables are abstracted, and the fourth when some state variables are ab-
stracted and the Esterel selection tree is used as an over-approximation ceiling.
Time and memory columns do not take into account the file parsing and net-
work construction times and memory usages, as they do not depend on the RSS
computation approach, and, on such examples, may become the most expensive

part of the process (although their complexity is linear and usually negligible).
The]L column indicates the number of remaining registers after the transitive
network sweeping pass.

Following the advices of the designers, we chose to abstract or replace by
inputs the state variables of all of the internal and external tanks but the feeder
ones. Note that the hierarchical nature of Syncharts designs allows our tool to
work with simple abstraction hints from the designer.

method time
mem.

#L
total reachable states at step n

(MB) 1 2 3 4 5

exact >10mn 79 178 8,749 3.01e8 1.33e13 3.33e13 3.67e13

repl. by inputs 3.8s 6 59 37 341 3,738
abstracting 1.7s 7 59 37 2.71e5 9.48e6 9.51e6
abs. + seltree 1.5s 6 59 37 1,670 6,807 7,407

Table 1: Verification of Property 4

method time
mem.

#L
total reachable states at step n

(MB) 1 2 3 4 5 6 7

exact >2mn 21 120 2 1.66e4 2.41e8 7.03e8 8.85e8

repl. by inputs 0.6s 5 37 2 70 229 245
abstracting 0.3s 5 37 2 4.33e3 1.07e6 2.42e6
abs. + seltree 0.3s 5 37 2 865 7.92e4 1.77e5

Table 2: Verification of Property 6

By removing state variables, we reduce the number of functions to build and
compute the image of. We also reduce the number of existential quantifications
to perform. Also, we cut some transitive links between functions, then allowing
the transitive network sweeping pass to remove more state variables. When the
removed variables are properly chosen, this results in great speed and memory
usage improvements: there are several orders of magnitude of differences be-
tween the exact RSS computation and the least over-approximation technique.
Furthermore, less iterations may be required to reach the fixpoint. Both tables
show that abstracting state variables can lead to a greater over-approximation
than replacement by inputs; for Property 4, this even require a additional it-
eration step. However, using relations between state variables expressed by the
Esterel selection tree allows us to reduce significantly the over-approximation.

In any case, state variables to be removed must be selected with care. If not,
excessive over-approximation may lead to a snowball effect : unreachable states
are found reachable, then the image of these states must be computed, which

may lead to other unreachable states found as reachable, and so on. As variable
abstraction computes greater over-approximations than replacement by inputs,
we can naturally expect results to be worse when they are already bad with
replacement by inputs.

On another example, time improvements due to variable abstraction range
from 20X to 70X and memory reduction from 5X to 10X, but the standard
technique of replacing state variables by inputs achieves better results. We are
currently improving the ORSS computation algorithm in order to obtain better
figures.

5 Conclusions

This paper presents a technique to improve the computation of the Reach-
able State Space of sequential circuits, by computing over-approximations of it
through variable abstraction, using a three-valued logic. This approach takes the
commonly used technique of replacing state variables by inputs a step further.
When state variables to be removed are properly chosen, relevant improvements
of both time and memory usage can be noticed in comparison with replacement
by inputs. Excessive over-approximation may be confined by using by construc-
tion RSS over-approximation ceilings, expressed by high-level structural data,
like the Esterel selection tree.

References

1. Charles André. SyncCharts: A Visual Representation of Reactive Behaviors, I3S,
1996.

2. Amar Bouali. XEVE, an Esterel Verification Environment. Proceedings of the 10th
International Conference on Computer Aided Verification, CAV’98, 1998.

3. J. R. Burch, E. M. Clarke, D. L. Dill, K. L. McMillan. Symbolic Model Checking
- 1020 States and Beyond. Proceedings of the 5th IEEE Symposium on Logic in
Computer Science, June 1990.

4. Gérard Berry. The Esterel Language Primer. CMA, Ecole des Mines de Paris and
INRIA. Available with the Esterel system and updated for each release.

5. Gérard Berry. The Constructive Semantics of Pure Esterel. CMA, Ecole des Mines
de Paris and INRIA. July 2, 1999.

6. G. Bruns, P. Godefroid. Model Checking Partial State Spaces with 3-Valued Temporal
Logics. Proceedings of the 11th Computer Aided Verification International Confer-
ence, CAV’99, 1999.

7. G. Bruns, P. Godefroid. Generalized Model Checking: Reasoning about Partial State
Spaces. Proceedings of the International Conference on Concurrency Theory, Con-
cur’00, August 2000.

8. J.A. Brzozowski, C.-J. H. Seger. Asynchronous Circuits. Springer-Verlag, 1996.
9. Olivier Coudert, Christian Berthet, Jean-Christophe Madre. Verification of Syn-

chronous Sequential Machines Based on Symbolic Execution. Proceedings of the
Workshop on Automatic Verification Methods for Finite State Systems, volume 407
of Lecture Notes in Computer Sciences, June 1989.

10. Arnaud Cavani, Patrick Courty. Implementing Esterel Studio Validation of Call
Control under the Bluetooth Protocol. Esterel Technologies, 2001. Available at
http://www.esterel-technologies.com.

11. H. Cho, G. Hatchel, E. Macii, B. Plessier, F. Somenzi. Algorithms for Approxi-
mate FSM Traversal based on State Space Decomposition. Proceedings of the 30th
ACM/IEEE Design Automation Conference, DAC’93, 1993.

12. Olivier Coudert, Jean-Christophe Madre. Symbolic Computation of the Valid States
of a Sequential Machine: Algorithms and Discussion. Proceedings of International
Worshop on Formal Methods in VLSI Design, January 1991.

13. O. Coudert, J.-C. Madre, H. Touati. TiGeR Version 1.0 User Guide. Digital Paris
Research Lab, 1993.

14. Bernard Dion, Sylvan Dissoubray. Modeling and Implementing Critical Real-Time
Systems with Esterel Studio. Esterel Technologies. In Real-Time Magazine 99-1,
1999.

15. Luciano Lavagno, Ellen M. Sentovich. ECL: A Specification Environment for
System-Level Design. Cadence Berkeley Laboratories. Proceedings of the 36th Design
Automation Conference, DAC’99, June 1999.

16. Shankar G. Govindaraju, David L. Dill, Alan J. Hu, Mark A. Horrowitz. Approxi-
mate Reachability with BDDs using Overlapping Projections. Proceedings of the 35th
Design Automation Conference, DAC’98, June 1998.

17. Shankar G. Govindaraju, David L. Dill, Jules P. Bergmann. Improved Approxi-
mate Reachability using Auxiliary State Variables. Proceedings of the 36th Design
Automation Conference, DAC’99, June 1999.

18. P. Godefroid, M. Huth, R. Jagadeesan. Abstraction-based Model Checking using
Modal Transition Systems. Proceedings of the 12th International Conference on Con-
currency Theory, Concur’01, August 2001.

19. M. Huth, R. Jagadeesan, D. Schmidt. Modal Transition Systems, a Foundation for
Three-Valued Program Analysis. European Symposium on Programming, 2000.

20. N. Halbwachs, F. Lagnier, P. Raymond. Synchronous Observers and the Verifica-
tion of Reactive Systems. Proceedings of the 3rd International Conference on Alge-
braic Methodology and Software Technology, June 1993.

21. Yann Le Biannic, Eric Nassor, Emmanuel Ledinot, Sylvan Dissoubray. UML Object
Specification for Real-Time Software. RTS 2000 Show, March 2000.

22. Luciano Lavagno, Ellen Sentovich. ECL: A Specification Environment for System-
Level Design. Proceedings of the 36th Design Automation Conference, DAC’99, June
1999.

23. S. Malik. Analysis of Cyclic Combinational Circuits. IEEE Transactions on
Computer-Aided Design, 13(7), July 1994.

24. Thomas R. Shiple, Gérard Berry, Hervé Touati. Constructive Analysis of Cyclic
Circuits. Proceedings of the International Design and Testing Conference, IDTC’96,
1996.

25. E. Sentovich, H. Toma, G. Berry. Efficient Latch Optimization Using Incompatible
Sets. Proceedings of the 34th Design Automation Conference, DAC’97, 1997.

