
Compiling Scheme programs to .NET Common
Intermediate Language

Yannis Bres, Bernard Paul Serpette, Manuel Serrano
Inria Sophia-Antipolis

2004 route des Lucioles - BP 93, F-06902 Sophia Antipolis, Cedex, France
{Yannis.Bres,Bernard.Serpette,Manuel.Serrano}@inria.fr

ABSTRACT
This paper presents the compilation of the Scheme

programming language to .NET platform. .NET pro-

vides a virtual machine, the Common Language Run-

time (CLR), that executes bytecode: the Common In-

termediate Language (CIL). Since CIL was designed

with language agnosticism in mind, it provides a rich

set of language constructs and functionalities. There-

fore, the CLR is the first execution environment that

offers type safety, managed memory, tail recursion

support and several flavors of pointers to functions.

As such, the CLR presents an interesting ground for

functional language implementations.

We discuss how to map Scheme constructs to CIL. We

present performance analyses on a large set of real-life

and standard Scheme benchmarks. In particular, we

compare the performances of these programs when

compiled to C, JVM and .NET. We show that .NET

still lags behind C and JVM.

1. INTRODUCTION
Introduced by Microsoft in 2001, the .NET Frame-

work has many similarities with the Sun Microsystems

Java Platform [9]. The execution engine, the Com-

mon Language Runtime (CLR), is a stack-based Vir-

tual Machine (VM) which executes a portable byte-

code: the Common Intermediate Language (CIL) [8].

The CLR enforces type safety through its bytecode

verifier (BCV), it supports polymorphism, the mem-

ory is garbage collected and the bytecode is Just-In-

Time [1,17] compiled to native code.

Beyond these similarities, Microsoft has designed the

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
.NET Technologies’2004 workshop proceedings,

ISBN 80-903100-4-4

c©UNIONAgency - Science Press, Plzen, Czech Republic

CLR with language agnosticism in mind. Indeed,

the CLR supports more language constructs than the

JVM: the CLR supports enumerated types, structures

and value types, contiguous multidimensional arrays,

etc. The CLR supports tail calls, i.e. calls that do

not consume stack space. The CLR supports closures

through delegates. Finally, pointers to functions can

be used although this leads to unverifiable bytecode.

The .NET framework has 4 publicly available imple-

mentations:

• From Microsoft, one commercial version and one

whose sources are published under a shared source

License (Rotor [16]). Rotor was released for re-

search and educational purposes. As such, Rotor

JIT and GC are simplified and stripped-down ver-

sions of the commercial CLR, which lead to poorer

performances.
• Ximian/Novell’s Mono Open Source project offers

a quite complete runtime and good performances

but has only a few compilation tools.
• From DotGNU, the Portable.Net GPL project pro-

vides a quite complete runtime and many compi-

lation tools. Unfortunately, it does not provide

a full-fledged JIT [20]. Hence, its speed cannot

compete with other implementations so we will

not show performance figures for this platform.

1.1 Bigloo
Bigloo is an optimizing compiler for the Scheme (R5

rs

[7]) programming language. It targets C code, JVM

bytecode and now .NET CIL. In the rest of this pre-

sentation, we will use BiglooC, BiglooJvm, and Bigloo-

.NET to refer to the specific Bigloo backends. Bench-

marks show that BiglooC generates C code whose per-

formance is close to human-written C code. When

targeting the JVM, programs run, in general, less

than 2 times slower than C code on the best JDK

implementations [12].

Bigloo offers several extensions to Scheme [7] such as:

modules for separate compilation, object extensions

à la Clos [3] + extensible classes [14], optional type

annotations for compile-time type verification and op-

timization.

Bigloo is itself written in Bigloo and the compiler is

bootstrapped on all of its three backends. The run-

time is made of 90% of Bigloo code and 10% of C,

Java, or C# for each backend.

1.2 Motivations
As for the JVM, the .NET Framework is appealing for

language implementors. The runtime offers a large set

of libraries, the execution engine provides a lot of ser-

vices and the produced binaries are expected to run on

a wide range of platforms. Moreover, we wanted to

explore what the “more language-agnostic” promise

can really bring to functional language implementa-

tions as well as the possibilities for language interop-

erability.

1.3 Outline of this paper
Section 2 presents the main techniques used to com-

pile Bigloo programs to CIL. Section 3 enumerates

the new functionalities of the .NET Framework that

could be used to improve the performances of pro-

duced code. Section 4 compares the run times of sev-

eral benchmark and real life Bigloo programs on the

three C, JVM and .NET backends.

2. COMPILATION OUTLINE
This section presents the general compilation scheme

of Bigloo programs to .NET CIL. Since CLR and JVM

are built upon similar concepts, the techniques de-

ployed for these two platforms are close. The compi-

lation to JVM being thoroughly presented in a pre-

vious paper [12], only a shallow presentation is given

here.

2.1 Data Representation
Scheme polymorphism implies that, in the general

case, all data types (numerals, characters, strings,

pairs, etc.) have a uniform representation. This may

lead to boxing values such as numerals and characters,

i.e., allocating heap cells pointing to numbers and

characters. Since boxing reduces performances (be-

cause of additional indirections) and increase memory

usage, we aim at avoiding boxing as much as possi-

ble. Thanks to the Storage Use Analysis [15] or user-

provided type annotations, numerals or characters are

usually passed as values and not boxed, i.e. not allo-

cated in the heap any more. Note that in the C back-

end, boxing of integers is always avoided using usual

tagging techniques [6]. In order to save memory and

avoid frequent allocations, integers in the range [-100

... 2048] and all 256 characters (objects that embed a

single byte) are preallocated. Integers are represented

using the int32 type. Reals are represented using

float64. Strings are represented by arrays of bytes,

as Scheme strings are mutable sequences of 1 byte

characters while the .NET built-in System.Strings

are non-mutable sequences of wide characters. Clo-

sures are instances of bigloo.procedure, as we will

see in Section 2.3.3.

2.2 Separate Compilation
A Bigloo program is made of several modules. Each

module is compiled into a CIL class that aggregates

the module definitions as static variables and func-

tions. Modules can define several classes. Such classes

are compiled as regular CIL classes (see §2.3.4). Since

we do not have a built-in CIL assembler yet, we print

out each module class as a file and use the Portable.Net

assembler to produce an object file. Once all modules

have been separately compiled, they are linked using

the Portable.NET linker.

2.3 Compilation of functions
Functions can be separated in several categories:

• Local tail-recursive functions that are not used as

first-class values are compiled as loops.

• Non tail-recursive functions that are not used as

first-class values are compiled as static methods.

• Functions used as first-class values are compiled

as real closures. A function is used as a first-class

value when it is used in a non-functional position,

i.e., used as an argument of another function call

or used as a return value of another function.

• Generic functions are compiled as static methods

and use an ad hoc framework for resolving late

binding.

2.3.1 Compiling tail-recursive functions
In order to avoid the overhead of function calls, local

functions that are not used as values and always called

tail-recursively are compiled into CIL loops. Here is

an example of two mutually recursive functions:
(define (odd x)

(define (even? n)

(if (= n 0) #t (odd? (- n 1))))

(define (odd? n)

(if (= n 0) #f (even? (- n 1))))

(odd? x))

These functions are compiled as:
.method static bool odd(int32) cil managed {

.locals(int32)

ldarg.0 // load arg

odd?: stloc.0 // store in local var #0

ldloc.0 // load local var #0

ldc.i4.0 // load constant 0

brne.s loop1 // if not equal go to loop1

ldc.i4.0 // load constant 0 (false)

br.s end // go to end

loop1: ldloc.0 // load local var #0

ldc.i4.1 // load constant 1

sub // subtract

even?: stloc.0 // store in local var #0

ldloc.0 // load local var #0

ldc.i4.0 // load constant 0

brne.s loop2 // if not equal go to loop2

ldc.i4.1 // load constant 1 (true)

br.s end // go to end

loop2: ldloc.0 // load local var #0

ldc.i4.1 // load constant 1

sub // subtract

br.s odd? // go to odd?

end: ret // return

}

2.3.2 Compiling regular functions
As a more general case, functions that cannot be com-

piled to loops are compiled as CIL static methods.

Consider the following Fibonacci function:
(define (fib n::int)

(if (< n 2) 1 (+ (fib (- n 1)) (fib (- n 2)))))

It is compiled as:
.method static int32 fib(int32) cil managed {

ldarg.0 // load arg

ldc.i4.2 // load constant 2

bne.s loop // if not equal go to loop

ldc.i4.1 // load constant 1

br.s end // go to end

loop: ldarg.0 // load arg

ldc.i4.1 // load constant 1

sub // subtract

call int32 fib::fib(int32)

ldarg.0 // load arg

ldc.i4.2 // load constant 2

sub // subtract

call int32 fib::fib(int32)

add // add

end: ret // return

}

Note also that if their body is sufficiently small, these

functions might get inlined (see [13]).

2.3.3 Compiling closures
Functions that are used as first-class values (passed

as argument, returned as value or stored in a data

structure) are compiled to closures.

The current closure compilation scheme for the JVM

and .NET backends comes from two de facto limi-

tations imposed by the JVM. First, the JVM does

not support pointers to functions. Second, as to each

class corresponds a file, we could not afford to declare

a different type for each closure. We estimated that

the overload on the class loader would raise a perfor-

mance issue for programs that use closures intensively.

As an example of real-life program, the Bigloo com-

piler itself is made of 289 modules and 175 classes,

which produce 464 class files. Since we estimate that

the number of real closures is greater than 4000, com-

piling each closure to a class file would multiply the

number of files by more than 10.

In JVM and .NET classes corresponding to Bigloo

modules extend bigloo.procedure. This class de-

clares the arity of the closure, an array of captured

variables, two kind of methods (one for functions with

fixed arity and one for functions with variable arity),

and the index of the closure within the module that

defines it. In order to have a single type to represent

closures, all the closures of a single module share the

same entry-point function. This function uses the in-

dex of the closure to call the body of the closure, using

a switch. Closure bodies are implemented as static

methods of the class associated to the module and

they receive as first argument the bigloo.procedure

instance.

The declaration of bigloo.procedure is similar to:
class procedure {

int index, arity;

Object[] env;

virtual Object funcall0();

virtual Object funcall1(Object a1);

virtual Object funcall2(Object a1, Object a2);

...

virtual Object apply(Object as);

}

Let’s see that in practice with the following program:
(module klist)

(define (make-klist n) (lambda (x) (cons x n)))

(map (make-adder 10) (list 1 2 3 4 5))

The compiler generates a class similar to:
class klist: procedure {

static procedure closure0

= new make-klist(0, 1, new Object[] {10});
make-klist(int index, int arity, Object[] env) {
super(index, arity, env);

}
...

override Object funcall1(Object arg) {
switch (index) {

case 0: return anon0(this, arg);

...

}
}
...

static Object anon0(procedure fun, Object arg) {
return make-pair(arg, fun.env[0]);

}
static void Main() {
map(closure0, list(1, 2, 3, 4, 5));

}
}

2.3.4 Compiling Generic Functions
The Bigloo object model [14] is inspired from Clos

[3]: classes only encapsulate data, there is no concept

of visibility. Behavior is implemented through generic

functions, called generics, which are overloaded global

methods whose dispatch is based on the dynamic type

of their arguments. Contrarily to Clos, Bigloo only

supports single inheritance, single dispatch. Bigloo

does not support the Clos Meta Object Protocol.

In both JVM and CLR, the object model is derived

from Smalltalk and C++: classes encapsulate data

and behaviour, implemented in methods which can

have different visibility levels. Method dispatch is

based on the dynamic type of objects on which they

are applied. Classes can be derived and extended

with new data slots, methods can be redefined and

new methods can be added. Only single inheritance

is supported for method implementation and instance

variables, while multiple inheritance is supported for

method declarations (interfaces).

Bigloo classes are first assigned a unique integer at

run-time. Then, for each generic a dispatch table is

built which associates class indexes to generic imple-

mentations, when defined. Note that class indexes

and dispatch tables cannot be built at compile-time

for separate compilation purposes. When a generic

is invoked, the class index of the first argument is

used as a lookup value in the dispatch table associ-

ated with the generic. Since these dispatch tables are

usually quite sparse, we introduce another indirection

level in order to save memory.

Whereas C does not provide direct support for any

evolved object model, JVM or CLR do and we could

have used the built-in virtual dispatch facilities. How-

ever, this would have lead to serious drawbacks. First,

as generics are declared for all objects, they would

have to be declared in the superclass of all Bigloo

classes. As a consequence, separate compilation would

not be possible any more. Moreover, this would lead

to huge virtual function tables for all the Bigloo classes,

with the corresponding memory overhead. Finally,

the framework we chose has two main advantages: it

is portable and it simplifies the maintenance of the

system. For these reasons, the generic dispatch mech-

anism is similar in the C, JVM and .NET backends.

2.4 Continuations
Scheme allows to capture the continuation of a com-

putation which can be used to escape pending com-

putations, but it can also be used to suspend, resume,

or even restart them! If in the C backend, continua-

tions are fully supported using setjmp, longjmp and

memcpy, in JVM and CLR, the stack is read-only and

thus cannot be restored. Continuation support is im-

plemented using structured exceptions. As such, con-

tinuations are first-class citizens but they can only be

used within the dynamic extent of their capture.

One way to implement full continuation support in

JVM and CLR would be to manage our own call

stack. However, this would impose to implement a

complex protocol to allow Bigloo programs to call ex-

ternal functions, while this is currently trivial. More-

over, we could expect JITs to be far less efficient on

code that manages its own stack. Doing so would

thus reduce performances of Bigloo programs, which

seems unacceptable for us. Therefore, we chose not

to be fully R
5
rs compliant on this topic.

3. .NET NEW FUNCTIONALITIES
In this section we explore the compilation of Scheme

with CIL constructs that have no counterpart in the

JVM.

3.1 Closures
If we consider the C implementation of closures as

a performance reference, the current JVM and .NET

implementations have several overheads:

• The cost of body dispatching depending on closure

index (in the C backend pointers to functions are

directly available).

• An additional indirection when accessing a cap-

tured variable in the array (in the C backend, the

array is inlined in the C structures representing

the closures).

• The array boundaries verification (which are not

verified at run-time in the C compiled code).

The CLR provides several constructs that can be used

to improve the closure compilation scheme: delegates,

declaring a new class per closure, and pointers to func-

tions [18]. We have not explored this last possibility

because it leads to unverifiable code.

3.1.1 Declaring a new type for each closure
Declaring a new type for each closure, as presented in

§2.3.3, would get rid of the indexed function call and

enables inlining of captured variables within the class

instead of storing them in an array. However, as we

have seen, each JVM class is stored in its own file and

there are more than 4000 closures in the compiler.

Hence, we could not afford to declare a new class for

each closure in the JVM backend: loading the closures

would be too much of a load for the class loader.

This constraint does not hold in the .NET Frame-

work as types are linked at compile-time within a

single binary file. However, loading a new type in

the system is a costly operation: metadata have to

be loaded, their integrity verified, etc. Moreover we

noted that each closure would add slightly more than

100 bytes of metadata in the final binary file, that is

about more than 400Kb for a binary which currently

weights about 3.8MB, i.e. a size increase of more than

10%.

Compiling closures with classes (Windows XP)
0 2

Mono 0.23

Rotor 1.0.2 2.1

MS 1.1 3.0

Fig. 1: Declaring a class per closure. This test
compares the performance of two techniques for
invoking closures: declaring a type per closure and
indexed functions. Lower is better.

We have written a small benchmark program that de-

clares 100 modules containing 50 closures each. For

each module, the program calls 10 times each 50 clo-

sures in a row. All closure functions are the identity,

so this program focuses on the cost of closure invo-

cations. Figure 1 shows that such a program always

runs at least twice slower when we define a new type

for each closure (Mono crashes on this test). Note

that if the closures were invoked more than 10 times,

these figures would decrease as the time wasted when

loading the new types would be compensated by the

acceleration of closure invocations. However, declar-

ing a new type for each closure does not seem to really

be a good choice for performances.

3.1.2 Using Delegates
The CLR provides a direct support for the Listener

Design Pattern through Delegates which are linked

lists of couples <object reference, pointer to method>.

Delegates are a restricted form of pointers to func-

tions that can be used in verifiable code while real

pointer to functions lead to unverifiable code. Declar-

ing delegates involves two steps. First, a delegate is

declared. Second, methods whose signature match its

declaration are registered. This is illustrated by the

following example:
delegate void SimpleDelegate(int arg);

void MyFunction(int arg) {...}
SimpleDelegate d;

d = new SimpleDelegate(MyFunction);

Compiling closures to delegates (Windows XP)
0 2

Mono 0.23 1.4

Rotor 1.0.2 1.2

MS 1.1 1.9

Fig. 2: Compiling closures to delegates. This test
compares the performance of two techniques for
invoking closures: delegates and indexed functions.

Figure 2 shows that our closure simulation program

also runs slower when using delegates as surrogate

pointers to functions instead of the indexed call. Such

a result is probably due to the fact that delegates are

linked lists of pointers to methods where we would be

satisfied by single pointers to methods.

3.2 Tail Calls
The R

5
rs requires that functions that are invoked

tail-recursively must not allocate stack frames. In C

and Java, tail recursion is not directly feasible because

these two languages does not support it. The tram-

poline technique [2,19,5,11] allows tail-recursive calls.

Since it imposes a performance penalty, we have cho-

sen not to use it for Bigloo. As such, the Bigloo C

and JVM backends are only partially compliant with

the R
5
rs on this topic.

In the CIL, function calls that precede a return in-

struction can be flagged as tail-recursive. In this case,

Impact of tail recursion (Linux/x86)
0 2

Traverse 1.0
Sieve 1.0
Rgc 1.1
Qsort 1.2
Queens 1.2
Puzzle 1.0
Peval
Nucleic 1.0
Mbrot 1.9
Maze 1.1
Leval 1.0
Fft 0.9
Fib 1.0
Earley 1.0
Conform 1.0
Cgc 1.2
Boyer 1.0
Bigloo
Beval 1.5
Bague 5.1
Almabench 1.4

Fig. 3: This test measures the impact of tail re-
cursion on .NET executions. Scores are relative
to Bigloo.NET, which is the 1.0 mark. Lower is
better.

the current stack frame is discarded before jumping

to the tail-called function. The CLR is the first ar-

chitecture considered by Bigloo that enables correct

support of tail-recursive calls. For the .NET code

generator, we have added a flag that enables or dis-

ables the CIL .tail call annotation. Hence, we have

been able to measure, as reported Figure 3, the im-

pact of tail calls on the overall performance of Bigloo

programs (see §6 for a brief description of the bench-

marks used). As demonstrated by this experiment,

the slowdown imposed by flagging tail calls is gen-

erally small. However, some programs are severely

impacted by tail recursion. In particular, the Bague

program runs 5 times slower when tail recursion is en-

abled! This toy benchmark essentially measures func-

tion calls. It spends its whole execution time in a re-

cursion made of 14 different call sites amongst which

6 are tail calls. This explains why this program is so

much impacted by tail recursion.

The tail-call support of the .NET platform is extremely

interesting for porting languages such as Scheme. How-

ever, since tail calls may slow down performance, we

have decided not to flag tail calls by default. Instead

we have provide the compiler with three options. One

enabling tail-calls inside modules, one enabling them

across modules, and a last one enabling them for all

functions, including closures.

3.3 Precompiling binaries
With some .NET platforms, assemblies (executables

and dynamic libraries) can be precompiled once for

all. This removes the need for just-in-time compil-

ing assemblies at each program launch and enables

heavier and more expensive program optimizations.

Precompiled binaries are specifically optimized for the

local platform and tuned for special features provided

by the processor. Note that the original portable as-

semblies are not replaced by optimized binary ver-

sions. Instead, binary versions of assemblies are main-

tained in a cache. Since .NET assemblies are ver-

sioned, the correspondance between original portable

assemblies and precompiled ones is straightforward.

When an assembly is looked up by the CLR, prefer-

ence is then given to a precompiled one of compatible

version, when available.

Even if precompiling binaries is a promising idea for

realistic programs such as Bigloo and Cgc (a simple

C-like compiler), we have unfortunately measured no

improvement using it. Even worse, we have even no-

ticed that when precompiled these programs actually

run slower!

4. PERFORMANCE EVALUATIONS
We have used a large set of benchmarks for estimating

the performance of the .NET CLR platform. They are

described in Figure §6, which also describes the plat-

form we have used for these experiments. For measur-

ing performance, we have used Mono .NET because

it is the only implementation that is available on all

main operating systems and because it delivers per-

formance comparable to that of Microsoft CLR (when

ran on Windows).

4.1 Bigloo vs C#
Bigloo.NET and C# vs BiglooC (Linux/x86)

Bigloo.NET C#

0 2 4

Sieve 4.2
4.4

Qsort 2.3
1.9

Queens 6.3
4.4

Mbrot 4.1
2.6

Fft 2.4
4.0

Fib 2.0
1.6

Bague 2.1
2.4

Almabench 1.6
2.3

Fig. 4: This test compares the performance of
Bigloo.NET vs C#. Scores are relative to BiglooC,
which is the 1.0 mark. Lower is better.

To assess the quality of the CIL code produced by

the Bigloo.NET compiler, we have compared the run-

ning times of the Bigloo generated code vs. regular

human-written code in C# on a subset of our pro-

grams made of micro benchmarks that were possible

to translate. For this experiment we use managed CIL

code. That is, bytecode that complies the byte code

verification rules of the CLR. Figure 4 shows that

most Bigloo compiled programs have performances

that are quite on par with their C# counterparts, but

for Almabench and Fft. Actually the Bigloo version

of these two benchmarks suffer from the same prob-

lem. Both benchmarks are floating point intensive.

The Bigloo type inference is not powerful enough to

get rid of polymorphism for these programs. Hence,

many allocations of floating point numbers take place

at run-time, which obviously slows down the overall

execution time.

4.2 Platform and backend benchmarks
BiglooJvm and Bigloo.NET vs BiglooC (Linux/x86)

BiglooJvm Bigloo.NET

0 2 4

Rgc 4.5
10.4

Peval 4.0
1.5

Nucleic 4.0
1.7

Maze 6.0
4.2

Leval 5.3
2.5

Earley 4.4
4.9

Conform 5.3
2.4

Cgc 6.3
3.5

Boyer 4.9
3.7

Bigloo 3.8
2.4

Beval 2.9
1.5

Fig. 5: This test compares BiglooJVM and
Bigloo.NET. Scores are relative to BiglooC, which
is the 1.0 mark. Lower is better.

Figure 5 shows the running times of several real-life

and standard Scheme benchmarks for all three Bigloo

backends. Since we are comparing to native code

where no verification takes place, we have decided to

measure the performance of unmanaged CIL bytecode

and JVM bytecode that is not conform to the JVM

bytecode verifier. (Figure 7 presents figures for un-

managed and managed CIL bytecode.)

In general, Bigloo.NET programs run from 1.5 to 2

times slower than their BiglooJvm counterpart. The

only exceptions are Earley and Rgc for which Bigloo-

.NET is faster. These two programs are also the only

ones for which the ratio BiglooJvm/BiglooC is greater

than 4. Actually these two programs contain patterns

that cause trouble to Sun’s JDK1.4.2 JIT used for this

experiment. When another JVM is used, such as the

one from IBM, these two programs run only twice

slower than their BiglooC counterpart.

The benchmarks test memory allocation, fixnum and

flonum arithmetics, function calls, etc. For all these

topics, the figures show that the ratio between Bigloo-

Jvm and Bigloo.NET is stable. This uniformity shows

that BiglooJVM avoids traps introduced by JITted

architectures [12]. The current gap between Jvm and

.NET performance is most likely due to the youth of

.NET implementations. After all, JVM benefits from

10 years of improvements and optimizations. We also

remember the time where each new JVM was improv-

ing performance by a factor of two!

4.2.1 Impact of the memory management
Bigloo.NET and BiglooC/MT vs BiglooC (Linux)

BiglooC/MT Bigloo.NET

0 2 4

Rgc 4.5
1.0

Nucleic 4.0
1.1

Maze 6.0
1.1

Cgc 6.3
1.1

Bigloo 3.8
1.1

Beval 2.9
1.0

Fig. 6: This test measures the impact of multi-
threading.

Both BiglooC (native) runtime system and Mono VM

use the garbage collector developed by H-J Boehm

[4]. However, as reported in Section 2.1, BiglooC uses

traditional C techniques for minimizing the memory

space of frequently used objects such as pairs or inte-

gers. In addition, BiglooC tunes the Boehm’s collec-

tor for single threaded applications while Mono tunes

it for multi-threading. In order to measure the im-

pact of the memory management on performance, we

have compiled a special BiglooC native version, called

BiglooC/MT that used the very same collector as the

mono one. As reported on Figure 6 BiglooC/MT

is no more than 10% slower than BiglooC on real

benchmarks. Therefore, we can conclude that mem-

ory management is not the culprit for the weaker per-

formance of Bigloo.NET.

4.3 Related Work
Besides Bigloo, several projects have been started to

provide support for Scheme in the .NET Framework.

(i) Dot-Scheme [10] is an extension of PLT Scheme

that gives PLT Scheme programs access to the Mi-

crosoft .NET Framework. (ii) Scheme.NET , from

the Indiana University. (iii) Scheme.NET , from the

Indiana University. (iv) Hotdog, from Northwestern

University. Unfortunately we have failed to install

these systems under Linux thus we do not present

performance comparison in this paper. However, from

the experiments we have conducted under Windows

it appears that none of these systems has been de-

signed and tuned for performance. Hence, they have

a different goal from Bigloo.NET.

Beside Scheme, there are two main active projects

for functional language support in .NET: (i) From

Microsoft Research, F# is an implementation of the

core of the CAML programming language.(ii) From

Microsoft Research and the University of Cambridge,

SML.NET is a compiler for Standard ML that targets

the .NET CLR and which supports language interop-

erability features for easy access to .NET libraries.

Unfortunately, as for the Scheme systems described

above, we have failed in installing these two systems

on Linux. Hence, we cannot report performance com-

parison in this paper.

5. CONCLUSIONS
We have presented the new .NET backend of Bigloo,

an optimizing compiler for a Scheme dialect. This

backend is fully operational. The whole runtime sys-

tem has been ported to .NET and the compiler boot-

straps on this platform. With the exception of con-

tinuations, the .NET backend is compliant to Scheme

R
5
rs. In particular, it is the first Bigloo backend

that handles tail-recursive calls correctly. Bigloo.NET

is available at: http://www.inria.fr/mimosa/fp/-

Bigloo.

In conclusion, most of the new functionalities of the

.NET Framework are still disappointing if we only

consider performances as the ultimate objective. On

the other hand, the support for tail calls in the CLR

is very appealing for implementing languages that re-

quire proper tail-recursion. Currently .NET perfor-

mance has not reached the one of Jvm implementa-

tion: Bigloo.NET programs run significantly slower

than BiglooC and BiglooJvm programs. However there

seems to be strong activity in the community of .NET

implementors. Future will tell if next versions of .NET

will bridge the gap with JVM implementations.

Bibliography
[1] Adl-Tabatabai, A. and Cierniak, M. and Lueh, G-Y.

and Parikh, V. and Stichnoth, J. – Fast, Effective
Code Generation in a Just-In-Time Java Com-
piler – Conference on Programming Language Design
and Implementation, Jun, 1998, pp. 280–190.

[2] Baker, H. – CONS Should Not CONS Its Argu-
ments, Part II: Cheney on the M.T.A <1> –
Sigplan Notices, 30(9), Sep, 1995, pp. 17-20.

[3] Bobrow, D. and DeMichiel, L. and Gabriel, R. and
Keene, S. and Kiczales, G. and Moon, D. – Common
lisp object system specification – special issue,
Sigplan Notices, (23), Sep, 1988.

[4] Boehm, H.J. – Space Efficient Conservative
Garbage Collection – Conference on Programming
Language Design and Implementation, Sigplan No-
tices, 28(6), 1993, pp. 197–206.

[5] Feeley, M. and Miller, J. and Rozas, G. and Wil-
son, J. – Compiling Higher-Order Languages
into Fully Tail-Recursive Portable C – Rapport
technique 1078, Université de Montréal, Département
d’informatique et r.o., Aug, 1997.

Wall clock time in seconds

Bench Bigloo BiglooJvm BiglooJvm (vrf) Bigloo.NET Bigloo.NET (mgd) Bigloo.NET (tailc)
Almabench 5.54 (1.0 δ) 10.29 (1.85 δ) 20.96 (3.78 δ) 8.72 (1.57 δ) 12.99 (2.34 δ) 12.01 (2.16 δ)
Bague 4.71 (1.0 δ) 7.51 (1.59 δ) 7.61 (1.61 δ) 11.52 (2.44 δ) 11.42 (2.42 δ) 58.81 (12.48 δ)
Beval 5.98 (1.0 δ) 8.88 (1.48 δ) 9.17 (1.53 δ) 17.2 (2.87 δ) 24.16 (4.04 δ) 25.2 (4.21 δ)
Bigloo 19.2 (1.0 δ) 45.91 (2.39 δ) 46.34 (2.41 δ) 73.48 (3.82 δ) 84.59 (4.40 δ) error

Boyer 8.43 (1.0 δ) 31.14 (3.69 δ) 30.61 (3.63 δ) 41.03 (4.86 δ) 57.07 (6.76 δ) 41.9 (4.97 δ)
Cgc 1.97 (1.0 δ) 6.82 (3.46 δ) 6.91 (3.50 δ) 12.4 (6.29 δ) 19.26 (9.77 δ) 15.15 (7.69 δ)
Conform 7.41 (1.0 δ) 17.82 (2.40 δ) 18.97 (2.56 δ) 39.4 (5.31 δ) 48.44 (6.53 δ) 40.0 (5.39 δ)
Earley 8.31 (1.0 δ) 40.86 (4.91 δ) 41.91 (5.04 δ) 36.27 (4.36 δ) 40.61 (4.88 δ) 36.7 (4.41 δ)
Fib 4.54 (1.0 δ) 7.32 (1.61 δ) 7.34 (1.61 δ) 7.27 (1.60 δ) 7.22 (1.59 δ) 7.43 (1.63 δ)
Fft 4.29 (1.0 δ) 7.8 (1.81 δ) 8.11 (1.89 δ) 15.26 (3.55 δ) 17.1 (3.98 δ) 13.71 (3.19 δ)
Leval 5.6 (1.0 δ) 13.8 (2.46 δ) 13.81 (2.46 δ) 29.91 (5.34 δ) 35.11 (6.26 δ) 30.0 (5.35 δ)
Maze 10.36 (1.0 δ) 43.5 (4.19 δ) 43.69 (4.21 δ) 62.18 (6.00 δ) 64.2 (6.19 δ) 66.41 (6.41 δ)
Mbrot 79.26 (1.0 δ) 199.26 (2.51 δ) 198.51 (2.50 δ) 205.9 (2.59 δ) 204.14 (2.57 δ) 403.51 (5.09 δ)
Nucleic 8.28 (1.0 δ) 14.1 (1.70 δ) 14.29 (1.72 δ) 33.53 (4.04 δ) 37.85 (4.57 δ) 33.3 (4.02 δ)
Peval 7.57 (1.0 δ) 11.28 (1.49 δ) 11.87 (1.56 δ) 30.01 (3.96 δ) 32.47 (4.28 δ) error

Puzzle 7.59 (1.0 δ) 12.96 (1.70 δ) 13.03 (1.71 δ) 20.96 (2.76 δ) 29.26 (3.85 δ) 21.0 (2.76 δ)
Queens 10.47 (1.0 δ) 36.97 (3.53 δ) 37.75 (3.60 δ) 42.76 (4.08 δ) 46.37 (4.42 δ) 53.33 (5.09 δ)
Qsort 8.85 (1.0 δ) 13.26 (1.49 δ) 13.39 (1.51 δ) 16.93 (1.91 δ) 16.72 (1.88 δ) 20.1 (2.27 δ)
Rgc 6.94 (1.0 δ) 72.3 (10.41 δ) 73.11 (10.53 δ) 31.43 (4.52 δ) 33.48 (4.82 δ) 35.96 (5.18 δ)
Sieve 7.37 (1.0 δ) 25.44 (3.45 δ) 25.17 (3.41 δ) 31.01 (4.20 δ) 32.19 (4.36 δ) 31.46 (4.26 δ)
Traverse 15.19 (1.0 δ) 43.02 (2.83 δ) 43.24 (2.84 δ) 76.4 (5.02 δ) 81.59 (5.37 δ) 74.21 (4.88 δ)

Fig. 7: Benchmarks timing on an AMD Tbird 1400Mhz/512MB, running Linux 2.4.21, Sun JDK 1.4.2,
and Mono 0.30.

[6] Gudeman, D. – Representing Type Information
in Dynamically Typed Languages – University of
Arizona, Departement of Computer Science, Gould-
Simpson Building, The University of Arizona, Tucson,
AZ 85721, Apr, 1993.

[7] Kelsey, R. and Clinger, W. and Rees, J. – The Re-
vised(5) Report on the Algorithmic Language
Scheme – Higher-Order and Symbolic Computation,
11(1), Sep, 1998.

[8] Lidin, S. – Inside Microsoft .NET IL Assembler
– Microsoft Press, 2002.

[9] Lindholm, T. and Yellin, F. – The Java Virtual
Machine – Addison-Wesley , 1996.

[10] Pinto, P. – Dot-Scheme A PLT Scheme FFI for
the .NET framework – Scheme workshop, Boston,
MA, USA, Nov, 2003.

[11] Schinz, M. and Odersky, M. – Tail call elimination
of the Java Virtual Machine – Proceedings of Ba-
bel’01, Florence, Italy, Sep, 2001.

[12] Serpette, B. and Serrano, M. – Compiling Scheme
to JVM bytecode: a performance study – 7th
Int’l Conf. on Functional Programming, Pittsburgh,
Pensylvanie, USA, Oct, 2002.

[13] Serrano, M. – Inline expansion: when and how –
Int. Symp. on Programming Languages, Implementa-
tions, Logics, and Programs, Southampton, UK, Sep,
1997, pp. 143–147.

[14] Serrano, M. – Wide classes – ECOOP’99, Lisbon,
Portugal, Jun, 1999, pp. 391–415.

[15] Serrano, M. and Feeley, M. – Storage Use Analy-
sis and its Applications – 1fst Int’l Conf. on Func-
tional Programming, Philadelphia, Penn, USA, May,
1996, pp. 50–61.

[16] Stutz, D. and Neward, T. and Shilling, G. – Shared
Source CLI Essentials – O’Reilly Associates,
March, 2003.

[17] Suganama, T. et al. – Overview of the IBM Java
Just-in-time compiler – IBM Systems Journal,
39(1), 2000.

[18] Syme, D. – ILX: Extending the .NET Common
IL for Functional Language Interoperability –
Proceedings of Babel’01, 2001.

[19] Tarditi, D. and Acharya, A. and Lee, P. – No as-
sembly required: Compiling Standard ML to
C – ACM Letters on Programming Languages and
Systems, 2(1), 1992, pp. 161–177.

[20] Weatherley, R. and Gopal, V. – Design of the
Portable.Net Interpreter – DotGNU, Jan, 2003.

6. APPENDIX: THE BENCHMARKS
Figure 7 presents all the numerical values on Linux

2.4.21/Athlon Tbird 1.4Ghz-512MB. Native code is

compiled with Gcc 3.2.3. The JVM is Sun’s JDK1.4.2.

The .NET CLR is Mono 0.30. The JVM and CLR are

multithreaded. Even single-threaded applications use

several threads. In order to take into account the con-

text switches implied by this technique we have pre-

ferred actual durations (wall clock) to CPU durations

(user + system time). It has been paid attention to

run the benchmarks on an unloaded computer. That

is, the wall clock duration and the CPU duration of

singled threaded C programs were the same.

Almabench (300 lines) floating point arithtmetic. Bague

(105 l) function calls, fixnum arithtmetic, and vectors. Beval

(582 l) the regular Bigloo Scheme evaluator. Bigloo (99,376

l) the bootstrap of the Bigloo compiler. Boyer (626 l) sym-

bols and conditional expressions. Cgc (8,128 l) A simple C-

to-mips compiler. Conform (596 l) lists, vectors and small

inner functions. Earley (672 l) Earley parser. Fft (120 l)

Fast Fourier transform. Fib (18 l) Fibonacci numbers. Leval

(555 l) A Scheme evaluator using λ-expressions. Maze (809

l) arrays, fixnum operations and iterators. Mbrot (47 l) The

Mandelbrot curve. Nucleic (3,507 l) floating point intensive

compuations. Peval (639 l) A partial evaluator. Puzzle (208

l) A Gabriel’s benchmark. Queens (131 l) tests list alloca-

tions. Qsort (124 l) arrays and fixnum arithmetic. Rgc (348

l) The Bigloo reader. Sieve (53 l) fixnum arithmetic and list

allocations. Slatex (2,827 l) A LaTeX preprocessor. Tra-

verse (136 l) allocates and modifies lists.

